Διόρθωση στην Εκτίμηση Μέγιστης Ετήσιας Βροχόπτωσης

Δρ. Γιάννης Διαλυνάς Λέκτορας Τμήμα Πολιτικών Μηχ. & Μηχ. Περιβάλλοντος Πανεπιστήμιο Κύπρου

28/06/2018

EXTREME HYDROLOGIC EVENTS

Mandra, Greece, Nov. 2017

Nicosia, Cyprus, Dec. 2014

Mandra, Greece, June 2018

MEASURING PRECIPITATION DEPTH

Time

$$F := \max\left\{ \int_{t}^{t+1} I(\tau) d\tau \right\} \bigg|_{t=0,1,\dots,T-1}$$

Fixed Maximum

$$F \coloneqq \max\left\{ \int_{t}^{t+1} I(\tau) d\tau \right\}_{t=0,1,\dots,T-1}$$
 Fixed Maximum
$$S \coloneqq \max\left\{ \int_{t}^{t+1} I(\tau) d\tau \right\}_{0 \le t \le T-1}$$
 Sliding Maximum

$$H_n = \frac{S_n}{F_n}$$

Hershfield's Correction Factor

DATASET

- We analyzed a very large database from the National Climatic Data Center (NCDC) that comprises **hourly** precipitation data from thousands of stations from all over the Unites States.
- The records are of variable length ranging from just a few years to more than 50 years.
- All data used at larger than the hourly time scale were constructed by aggregating the original hourly time series.
- We studied **7.127 records** of hourly precipitation and we estimated the sliding and fixed-interval maximum precipitation for every year and for every record. The result was an unprecedentedly large number of estimated values, i.e., more than 100.000 years for each time scale.

Previous studies are based on *limited datasets*

- Kerr et al. (1970): **45** stations (PA, USA)
- Harihara and Tripathi (1973): **67** stations, 25 years (India)
- Natural Environment Research Council (1975): 50 stations (UK) 30°
- van Montfort (1990): **1** station, 58 years
- Huff and Angel (1992): **41** stations, 40 years (IN, USA)
- Faiers et al. (1994): **14** stations (LA, USA)

Methodology

- For all records we estimated:
 - i. The sliding maximum value at several time scales *k* by sliding a *k*-hour moving window over the year and extracting the maximum of the resulted values.
 - ii. The fixed-interval maximum value by aggregating the hourly values over the year in *k*-hour non-overlapping intervals and extracting the maximum of the resulted values.
- We estimated the *H*-factors as the ratio of the S-maximum value to the F-maximum value.
- We performed this analysis for the following time scales given in hours: {2, 4, 6, 8, 12, 16, 20, 24, 30, 36, 42, 48, 56, 64, 72}.

Sliding and fixed interval maxima of a randomly selected time series.

Estimated 24 h *H*-factors from Fig. 3 as the ratio of S- to F-maxima.

STATISTICS OF F-MAXIMA

Table 1. Basic summary statistics of fixed-interval maxima at various time scales

Scale	No of yrs	Median	Mean	SD	C _v	C _s	C _k	τ_2	$ au_3$	$ au_4$
2-hr	129634	27.94	30.78	22.69	0.74	4.07	76.45	0.37	0.17	0.16
4-hr	129634	33.78	37.43	26.80	0.72	4.21	105.20	0.36	0.17	0.18
6-hr	129634	38.10	41.88	29.48	0.70	4.41	153.11	0.35	0.17	0.18
8-hr	129634	40.64	45.14	31.28	0.69	3.16	59.60	0.35	0.17	0.19
12-hr	129634	45.72	50.15	34.64	0.69	3.47	88.85	0.35	0.17	0.19
16-hr	129634	48.51	53.73	36.85	0.69	2.57	36.10	0.35	0.17	0.19
20-hr	129634	50.80	56.58	39.09	0.69	2.93	58.96	0.35	0.17	0.19
24-hr	129634	53.34	58.71	40.67	0.69	2.78	51.20	0.35	0.17	0.19
30-hr	129613	55.88	62.10	43.03	0.69	2.60	42.69	0.36	0.18	0.19
36-hr	129613	58.42	64.70	44.94	0.69	2.50	37.37	0.36	0.18	0.19
42-hr	129613	60.20	67.07	47.00	0.70	2.46	33.47	0.36	0.19	0.19
48-hr	129613	60.96	68.66	48.19	0.70	2.43	31.45	0.36	0.19	0.20
56-hr	129610	63.50	71.18	50.13	0.70	2.39	28.92	0.36	0.19	0.20
64-hr	129610	65.28	73.19	52.25	0.71	3.85	134.88	0.36	0.19	0.20
72-hr	129610	66.04	74.78	52.82	0.71	2.32	25.31	0.36	0.19	0.20

Summary statistics of sliding maxima at various time scales.

L-ratios $\tau_{\rm 2}, \tau_{\rm 3}\,$ and $\tau_{\rm 4}$ of sliding maxima at various time scales.

STATISTICS OF S-MAXIMA

Table 2. Basic summary statistics of sliding maxima at various time scales

Scale	No of yrs	Median	Mean	SD	C _v	C _s	C _k	τ_2	$ au_3$	$ au_4$
2-hr	129634	30.48	33.33	24.36	0.73	3.86	74.39	0.37	0.17	0.16
4-hr	129634	37.59	41.43	29.52	0.71	4.64	161.36	0.36	0.17	0.18
6-hr	129634	42.42	46.61	32.50	0.70	3.87	112.92	0.35	0.17	0.18
8-hr	129634	45.72	50.52	34.86	0.69	3.46	88.00	0.35	0.17	0.19
12-hr	129634	50.80	56.22	38.44	0.68	2.98	62.64	0.35	0.17	0.19
16-hr	129634	54.86	60.41	41.25	0.68	2.71	49.35	0.35	0.17	0.19
20-hr	129634	58.17	63.83	43.70	0.68	2.55	41.23	0.35	0.17	0.19
24-hr	129634	60.71	66.80	45.81	0.69	2.42	35.50	0.35	0.17	0.19
30-hr	129613	63.50	70.52	48.51	0.69	2.30	30.09	0.35	0.18	0.19
36-hr	129613	66.04	73.32	50.74	0.69	2.25	26.82	0.36	0.18	0.19
42-hr	129613	67.56	75.65	52.62	0.70	2.23	25.02	0.36	0.18	0.19
48-hr	129613	69.34	77.82	54.56	0.70	2.91	66.13	0.36	0.19	0.19
56-hr	129610	71.37	80.49	56.90	0.71	4.04	158.76	0.36	0.19	0.20
64-hr	129610	73.66	82.67	58.58	0.71	3.92	144.05	0.36	0.19	0.20
72-hr	129610	75.69	84.80	60.17	0.71	3.82	132.23	0.36	0.19	0.20

Summary statistics of sliding maxima at various time scales.

L-ratios $\tau_{\rm 2}, \tau_{\rm 3}\,$ and $\tau_{\rm 4}$ of sliding maxima at various time scales.

STATISTICS OF H-FACTORS

Table 3. Basic summary statistics of H factors at various time scales

Scale	No of yrs	<i>H</i> = 1 (%)	Mode	Median	Mean	SD	C _V	C _s	C _k	τ_2	$ au_3$	$ au_4$
2-hr	107684	55.7	1	1.00	1.09	0.16	0.14	2.17	7.98	0.06	0.55	0.22
4-hr	101631	36.4	1	1.05	1.12	0.16	0.14	1.89	6.89	0.07	0.43	0.14
6-hr	99806	31.3	1	1.06	1.12	0.16	0.14	1.81	6.51	0.07	0.41	0.14
8-hr	98911	28.3	1	1.07	1.13	0.17	0.15	1.75	6.23	0.07	0.39	0.13
12-hr	98753	27.9	1	1.07	1.13	0.17	0.15	1.73	6.07	0.07	0.39	0.13
16-hr	98290	27.1	1	1.07	1.14	0.17	0.15	1.70	5.86	0.08	0.40	0.13
20-hr	98139	26.3	1	1.07	1.14	0.18	0.16	1.67	5.69	0.08	0.39	0.13
24-hr	97482	23.9	1	1.08	1.15	0.19	0.16	1.59	5.33	0.08	0.37	0.12
30-hr	97927	25.9	1	1.08	1.15	0.19	0.16	1.64	5.82	0.08	0.38	0.12
36-hr	98427	27.9	1	1.07	1.15	0.19	0.16	1.69	6.13	0.08	0.40	0.13
42-hr	98718	28.9	1	1.07	1.14	0.19	0.17	3.05	61.30	0.08	0.41	0.14
48-hr	98532	28.2	1	1.07	1.15	0.19	0.17	2.98	75.69	0.08	0.40	0.13
56-hr	98578	28.7	1	1.07	1.15	0.19	0.16	1.83	8.56	0.08	0.40	0.13
64-hr	98737	15.8	1	1.07	1.15	0.19	0.17	2.65	25.95	0.08	0.41	0.14
72-hr	98319	12.9	1	1.07	1.15	0.19	0.17	2.69	36.25	0.08	0.40	0.13

Summary statistics of *H*-factors *vs*. time scale.

Standard deviation of *H*-factors *vs*. time scale.

L-ratios τ_2 , τ_3 and τ_4 of *H*-factors *vs*. time scale.

EMPIRICAL DISTRIBUTION OF H-FACTORS (I)

Empirical distributions of the estimated *H* factors for the following time scales: 2 h, 4 h, 8 h and 12 h.

EMPIRICAL DISTRIBUTION OF H-FACTORS (II)

Empirical distributions of the estimated *H* factors for the following time scales: 24 h, 36 h, 48 h and 72 h.

PROBABILITY DISTRIBUTION FUNCTION OF H-FACTORS

$$F_{\rm BW}(x) = \frac{1 - \exp\left(-\beta^{-\gamma} \left(x - 1\right)^{\gamma}\right)}{1 - \exp\left(-\beta^{-\gamma}\right)}$$

• *bounded Weibull* distribution

PROBABILITY DISTRIBUTION FUNCTION OF H-FACTORS

$$F_{H|H>1}(x) = \frac{1 - \exp(-5(x-1))}{1 - \exp(-5)}$$

$$\mu_{H|H>1} = 1 + \beta + (1 - \exp(1/\beta))^{-1} = 1.193$$

- *bounded Weibull* distribution
- Scale invariant distribution fit

$$p_1(k) = \Pr(H = 1) = a + (1 - a) \exp\left(-\left(\frac{k - 1}{b}\right)^c\right)$$

$$p_1(k) = 0.268 + 0.732 \exp\left(-\left(\frac{k-1}{1.134}\right)^{0.639}\right)$$

COMPLETE PROBABILITY DISTRIBUTION

$$F_{H}(x;k) = \begin{cases} p_{1}(k) & H = 1\\ \left(1 - p_{1}(k)\right) F_{H|H>1}(x) + p_{1}(k) & 1 < H \le 2 \end{cases}$$

 $\mu_{H}(k) = (1 - p_{1}(k)) \mu_{H|H>1} + p_{1}(k) = 1.193 - 0.193 p_{1}(k)$

REAL WORLD EXAMPLE

- Shasta dam, California (1943-2012)
 - 100 year precipitation estimate: 268 mm \rightarrow 303 mm
 - 500 year precipitation estimate: $342 \text{ mm} \rightarrow 386 \text{ mm}$
 - 1000 year precipitation estimate: 378 mm \rightarrow 427 mm

• We performed an unprecedentedly large analysis of thousands of hourly precipitation records across the USA, estimating the annual Sliding and Fixed-interval maxima for several time scales

- We performed an unprecedentedly large analysis of thousands of hourly precipitation records across the USA, estimating the annual Sliding and Fixed-interval maxima for several time scales
- Distribution shape characteristics of S- and F-maxima are relatively invariant

- We performed an unprecedentedly large analysis of thousands of hourly precipitation records across the USA, estimating the annual Sliding and Fixed-interval maxima for several time scales
- Distribution shape characteristics of S- and F-maxima are relatively invariant
- We explored the probabilistic behavior of Hershfield's factor, which corrects for the effects of the temporal discretization and thus can be crucial for quantifying better rainfall extremes

- We performed an unprecedentedly large analysis of thousands of hourly precipitation records across the USA, estimating the annual Sliding and Fixed-interval maxima for several time scales
- Distribution shape characteristics of S- and F-maxima are relatively invariant
- We explored the probabilistic behavior of Hershfield's factor, which corrects for the effects of the temporal discretization and thus can be crucial for quantifying better rainfall extremes
- On average, estimates of the maximum precipitation need to be corrected by a factor of **1.13**

Hershfield factor revisited: Correcting annual maximum precipitation

Papalexiou, S. M., Y. G. Dialynas, and S. Grimaldi (2016), Hershfield Factor Revisited: Correcting Annual Maximum Precipitation, Journal of Hydrology, 542, 884-895

References

- Dwyer, I. J., & Reed, D. W. (1994). Effective fractal dimension and corrections to the mean of annual maxima. Journal of Hydrology, 157(1), 13-34.
- Dwyer, I.J. and Reed, D.W., 1995a. Allowance for discretization in hydrological and environmental risk estimation. Institute of Hydrology, Wallingford, UK; Report No. 123, 45 pp.
- Dwyer, I.J. and Reed, D.W., 1995b. Correcting mean annual maxima for data discretization. Preprints 6th Int. Meet. on Statistical Climatology; Galway, Ireland, pp. 447–450.
- Faiers, G.E., J.M. Grymes, III, B.D. Keim, and R.A. Muller. 1994. A Reexamination of Extreme 24
- Hour Rainfall in Louisiana, U.S.A. Climate Research 4:2531.
- Harihara Ayya, P.S. and Tripathi, N., 1973. Relationship of the clock-hour to 60-min and the observational day to 1440min rainfall. Ind. J. Meteorol. Geophys., 24 (3): 279-282.
- Hershfield, D.M. & Wilson, W.T. 1958. Generalizing of rainfall-intensity-frequency data. *IUGGIIAHS publication no. 43,* 499-506.
- Hershfield, D. M., 1961a. Rainfall frequency atlas of the United States. Weather Bureau Technical Paper 40, U.S. Department of Commerce, Washington. DC
- Hershfield, D. M., Estimating the probable maximum precipitation, Proc. ASCE, J. Hydraul. Div., 87(HY5), 99-106, 1961b.
- Huff, F. A. and J. R. Angel, 1992. <u>Rainfall Frequency Atlas of the Midwest (Bulletin 71).</u> Illinois State Water Survey
- Kerr, R.L., McGinnis, D.F., Reich, B.M. & Rachford, T.M. 1970. Analysis of rainfall-duration-frequency for Pennsylvania. Institute for Research on Land and Water Resources, The Pennsylvania State University, research publication 70.
- Natural Environment Research Council, 1975. Flood Studies Report, 5 vols. Natl. Environ. Res. Counc. London.
- Papalexiou, S. M., Y. G. Dialynas, and S. Grimaldi (2016), Hershfield Factor Revisited: Correcting Annual Maximum Precipitation, Journal of Hydrology, 542, 884-895, doi: <u>http://dx.doi.org/10.1016/j.jhydrol.2016.09.058</u>
- van Montfort, M. A. (1990). Sliding maxima. *Journal of Hydrology*, *118*(1), 77-85.